

A PHYSICOCHEMICAL APPROACH TO CHARACTERIZING ANTIBODY-DRUG CONJUGATES THROUGH STABILITY INTO TARGET VALIDATION

Colette Quinn, Ph.D. Waters LLC, Milford, MA, USA, Co-authors: Libo Wang, Ph.D., Jeffrey Zonderman, RedShiftBio, Burlington, MA, USA; Rony Nehmé, Creoptix AG, Waedenswil, CH; Shawn Owen, Ph.D., Keith Arlotta, University of Utah, Salt Lake City, UT, USA

Background

Trastuzumab (Herceptin®) is approved for use in human epidermal growth factor receptor HER2-positive cancers (ie breast, stomach). Maytansine, cytotoxic drug increases application -binds to tubulin to prevent microtubule formation.

Antibody Drug Conjugates: A discriminatory therapeutic with high potency

Experimental

- On-bead or off-bead preparation.
- On-bead advantage: smaller batches, mL of 0.5 mg/mL
- On-bead question: Did the bead occlude favorable modification sites?
- Modification question: After adding a drug to the mAb does its conformation and binding profile change?

A Panel of Techniques to Answer the Questions

A panel of methods were used to establish comprehensive characterization of antibody-drug conjugates (ADCs).

- Liquid Chromatography
 Mass Spectrometry
 Size Exclusion Chromatography
 - Microfluidic Modulation Spectroscopy
 Differential Scanning Calorimetry
 - Grating Coupled Interferometry
 Isothermal Titration Calorimetry

Biochemical Characterization

Intact LC MS: Drug-Antibody Ratio

- Waters Acquity UPLC with Xevo G2-QTof
- Sample Prep: deglycosylation & Desalting with a MassPREP column

Peptide Mapping: Modification ID

- Waters Acquity UPLC with Xevo G2-QTof
- Peptide Mapping After Trypsin Digest. Acquity UPLC with Xevo G2-S, QToF

Biophysical Conformational Stability and Characterization

Domain Stability & Heterogeneity: DSC TA Instruments NanoDSC with a Capillary Cell Fab + CH3 Tras CH2 Tras-DM **FWH** ΔH₄ ΔH_2 ΔH_{total} I_{max1} max2 (kJ/mol) (kJ/mol) (kJ/mol) (°C) (°C) Tras(avg) 68.4 5.7 81.4 574 3185 3853 T DM 64.4 8.5 80.6 251 2389 2698 (avg)

Binding Affinity and Stability

Affinity, Enthalpy, Entropy, Stoichiometry: ITC

- TA Instruments Affinity ITC LV
- Affinity, Enthalpy, Entropy, Stoichiometry

Avg Values (n=2)	K _d (nM)	n	ΔH (kJ/mol)
Tras	3 ± 1	0.8 ± 0.2	-101 ± 5
T-DM on	3.3 ± 0.3	0.64 ± 0.1	-99 ± 2
T-DM off	4 ± 2	0.66 ± 0.02	-98 ± 2

Affinity, k_{on}, k_{off}: GCI

- Creoptix WAVE GCI
- · Amine-coupled
- k_{on} agreement, similar K_d for Her2Fc

Conclusion

- The complex was modified, but did it change?
 - Stability Changes
 - Binding remained Intact
- This type of <u>combined biophysical and biochemical analysis</u> amplifies and solidifies the confidence of the reported results while decreasing bias.

 Colette Quinn, Ph.D. Waters LLC, Milford, MA, USA, Co-authors: Libo Wang, Ph.D., Jeffrey Zonderman, RedShiftBio, Burlington, MA, USA; Rony Nehmé, Creoptix AG, Waedenswil, CH; Shawn Owen, Ph.D., Keith Arlotta, University of Utah, Salt Lake City, UT, USA

Waters

THE SCIENCE OF WHAT'S POSSIBLE.™

